ES基本操作
2节 ElasticSearch基本操作
2.1 倒排索引
Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。
示例:
(1):假设文档集合包含五个文档,每个文档内容如图所示,在图中最左端一栏是每个文档对应的文档编号。我们的任务就是对这个文档集合建立倒排索引。
(2):中文和英文等语言不同,单词之间没有明确分隔符号,所以首先要用分词系统将文档自动切分成单词序列。这样每个文档就转换为由单词序列构成的数据流,为了系统后续处理方便,需要对每个不同的单词赋予唯一的单词编号,同时记录下哪些文档包含这个单词,在如此处理结束后,我们可以得到最简单的倒排索引
“单词ID”:记录了每个单词的单词编号;
“单词”:是对应的单词;
“倒排列表:即每个单词对应的倒排列表
(3):索引系统还可以记录除此之外的更多信息,下图还记载了单词频率信息(TF)即这个单词在某个文档中的出现次数,之所以要记录这个信息,是因为词频信息在搜索结果排序时,计算查询和文档相似度是很重要的一个计算因子,所以将其记录在倒排列表中,以方便后续排序时进行分值计算。
(4):倒排列表中还可以记录单词在某个文档出现的位置信息
(1,<11>,1),(2,<7>,1),(3,<3,9>,2)
有了这个索引系统,搜索引擎可以很方便地响应用户的查询,比如用户输入查询词“Facebook”,搜索系统查找倒排索引,从中可以读出包含这个单词的文档,这些文档就是提供给用户的搜索结果,而利用单词频率信息、文档频率信息即可以对这些候选搜索结果进行排序,计算文档和查询的相似性,按照相似性得分由高到低排序输出,此即为搜索系统的部分内部流程。
2.1.1 倒排索引原理
1.The quick brown fox jumped over the lazy dog
2.Quick brown foxes leap over lazy dogs in summer
计算相关度分数时,文档1的匹配度高,分数会比文档2高
问题:
Quick 和 quick 以独立的词条出现,然而用户可能认为它们是相同的词。
fox 和 foxes 非常相似, 就像 dog 和 dogs ;他们有相同的词根。
jumped 和 leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。
搜索含有 Quick fox的文档是搜索不到的
使用标准化规则(normalization): 建立倒排索引的时候,会对拆分出的各个单词进行相应的处理,以提升后面搜索的时候能够搜索到相关联的文档的概率
2.1.2 分词器介绍及内置分词器
分词器:从一串文本中切分出一个一个的词条,并对每个词条进行标准化
包括三部分:
character filter:分词之前的预处理,过滤掉HTML标签,特殊符号转换等
tokenizer:分词
token filter:标准化
内置分词器:
standard 分词器:(默认的)他会将词汇单元转换成小写形式,并去除停用词和标点符号,支持中文采用的方法为单字切分
simple 分词器:首先会通过非字母字符来分割文本信息,然后将词汇单元统一为小写形式。该分析器会去掉数字类型的字符。
Whitespace 分词器:仅仅是去除空格,对字符没有lowcase化,不支持中文; 并且不对生成的词汇单元进行其他的标准化处理。
language 分词器:特定语言的分词器,不支持中文
2.2 使用ElasticSearch API 实现CRUD
#添加索引:
PUT /lib/
{
"settings":{
"index":{
"number_of_shards": 5,
"number_of_replicas": 1
}
}
}
#查看索引信息:
GET /lib/_settings
GET _all/_settings
#添加文档:
PUT /lib/user/1
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}
POST /lib/user/
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 23,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
#查看文档:
GET /lib/user/1
GET /lib/user/
GET /lib/user/1?_source=age,interests
#更新文档:
PUT /lib/user/1
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 36,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}
POST /lib/user/1/_update
{
"doc":{
"age":33
}
}
#删除一个文档:
DELETE /lib/user/1
#删除一个索引L
DELETE /lib
2.3 批量获取文档
1)使用es提供的Multi Get API:
使用Multi Get API可以通过索引名、类型名、文档id一次得到一个文档集合,文档可以来自同一个索引库,也可以来自不同索引库
2)使用curl命令:
curl 'http://192.168.25.131:9200/_mget' -d '{
"docs":[
{
"_index": "lib",
"_type": "user",
"_id": 1
},
{
"_index": "lib",
"_type": "user",
"_id": 2
}
]
}'
3)在客户端工具中:
GET /_mget
{
"docs":[
{
"_index": "lib",
"_type": "user",
"_id": 1
},
{
"_index": "lib",
"_type": "user",
"_id": 2
},
{
"_index": "lib",
"_type": "user",
"_id": 3
}
]
}
4)可以指定具体的字段:
GET /_mget
{
"docs":[
{
"_index": "lib",
"_type": "user",
"_id": 1,
"_source": "interests"
},
{
"_index": "lib",
"_type": "user",
"_id": 2,
"_source": ["age","interests"]
}
]
}
5)获取同索引同类型下的不同文档:
GET /lib/user/_mget
{
"docs":[
{
"_id": 1
},
{
"_type": "user",
"_id": 2,
}
]
}
##
GET /lib/user/_mget
{
"ids": ["1","2"]
}
2.4 使用Bulk API 实现批量操作
bulk的格式:
{action:{metadata}}\n
{requstbody}\n
action:(行为)
create:文档不存在时创建
update:更新文档
index:创建新文档或替换已有文档
delete:删除一个文档
metadata:_index,_type,_id
create 和index的区别
如果数据存在,使用create操作失败,会提示文档已经存在,使用index则可以成功执行。
#示例:
{"delete":{"_index":"lib","_type":"user","_id":"1"}}
#批量添加:
POST /lib2/books/_bulk
{"index":{"_id":1}}
{"title":"Java","price":55}
{"index":{"_id":2}}
{"title":"Html5","price":45}
{"index":{"_id":3}}
{"title":"Php","price":35}
{"index":{"_id":4}}
{"title":"Python","price":50}
#批量获取:
GET /lib2/books/_mget
{
"ids": ["1","2","3","4"]
}
#删除:没有请求体
POST /lib2/books/_bulk
{"delete":{"_index":"lib2","_type":"books","_id":4}}
{"create":{"_index":"tt","_type":"ttt","_id":"100"}}
{"name":"lisi"}
{"index":{"_index":"tt","_type":"ttt"}}
{"name":"zhaosi"}
{"update":{"_index":"lib2","_type":"books","_id":"4"}}
{"doc":{"price":58}}
bulk一次最大处理多少数据量:
bulk会把将要处理的数据载入内存中,所以数据量是有限制的,最佳的数据量不是一个确定的数值,它取决于你的硬件,你的文档大小以及复杂性,你的索引以及搜索的负载。
一般建议是1000-5000个文档,大小建议是5-15MB,默认不能超过100M,可以在es的配置文件(即$ES_HOME下的config下的elasticsearch.yml)中。
2.5 版本控制
ElasticSearch采用了乐观锁来保证数据的一致性,也就是说,当用户对document进行操作时,并不需要对该document作加锁和解锁的操作,只需要指定要操作的版本即可。当版本号一致时,ElasticSearch会允许该操作顺利执行,而当版本号存在冲突时,ElasticSearch会提示冲突并抛出异常(VersionConflictEngineException异常)。
ElasticSearch的版本号的取值范围为1到2*^63-1。
- 内部版本控制:使用的是_version
- 外部版本控制:elasticsearch在处理外部版本号时会与对内部版本号的处理有些不同。它不再是检查_version是否与请求中指定的数值相同,而是检查当前的_version是否比指定的数值小。如果请求成功,那么外部的版本号就会被存储到文档中的_version中。
==为了保持_version与外部版本控制的数据一致 使用version_type=external==
2.6 什么是Mapping
PUT /myindex/article/1
{
"post_date": "2018-05-10",
"title": "Java",
"content": "java is the best language",
"author_id": 119
}
PUT /myindex/article/2
{
"post_date": "2018-05-12",
"title": "html",
"content": "I like html",
"author_id": 120
}
PUT /myindex/article/3
{
"post_date": "2018-05-16",
"title": "es",
"content": "Es is distributed document store",
"author_id": 110
}
GET /myindex/article/_search?q=2018-05
GET /myindex/article/_search?q=2018-05-10
GET /myindex/article/_search?q=html
GET /myindex/article/_search?q=java
#查看es自动创建的mapping
GET /myindex/article/_mapping
es自动创建了index,type,以及type对应的mapping(dynamic mapping)
什么是映射:mapping定义了type中的每个字段的数据类型以及这些字段如何分词等相关属性
{
"myindex": {
"mappings": {
"article": {
"properties": {
"author_id": {
"type": "long"
},
"content": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"post_date": {
"type": "date"
},
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
创建索引的时候,可以预先定义字段的类型以及相关属性,这样就能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理字符串值等
支持的数据类型:
(1)核心数据类型(Core datatypes)
字符型:string,string类型包括
text 和 keyword
text类型被用来索引长文本,在建立索引前会将这些文本进行分词,转化为词的组合,建立索引。允许es来检索这些词语。text类型不能用来排序和聚合。
Keyword类型不需要进行分词,可以被用来检索过滤、排序和聚合。keyword 类型字段只能用本身来进行检索
数字型:long, integer, short, byte, double, float
日期型:date
布尔型:boolean
二进制型:binary
(2)复杂数据类型(Complex datatypes)
数组类型(Array datatype):数组类型不需要专门指定数组元素的type,例如:
字符型数组: [ "one", "two" ]
整型数组:[ 1, 2 ]
数组型数组:[ 1, [ 2, 3 ]] 等价于[ 1, 2, 3 ]
对象数组:[ { "name": "Mary", "age": 12 }, { "name": "John", "age": 10 }]
对象类型(Object datatype):_ object _ 用于单个JSON对象;
嵌套类型(Nested datatype):_ nested _ 用于JSON数组;
(3)地理位置类型(Geo datatypes)
地理坐标类型(Geo-point datatype):_ geo_point _ 用于经纬度坐标;
地理形状类型(Geo-Shape datatype):_ geo_shape _ 用于类似于多边形的复杂形状;
(4)特定类型(Specialised datatypes)
IPv4 类型(IPv4 datatype):_ ip _ 用于IPv4 地址;
Completion 类型(Completion datatype):_ completion _提供自动补全建议;
Token count 类型(Token count datatype):_ token_count _ 用于统计做了标记的字段的index数目,该值会一直增加,不会因为过滤条件而减少。
mapper-murmur3
类型:通过插件,可以通过 _ murmur3 _ 来计算 index 的 hash 值;
附加类型(Attachment datatype):采用 mapper-attachments
插件,可支持_ attachments _ 索引,例如 Microsoft Office 格式,Open Document 格式,ePub, HTML 等。
支持的属性:
映射的分类:
(1)动态映射:
当ES在文档中碰到一个以前没见过的字段时,它会利用动态映射来决定该字段的类型,并自动地对该字段添加映射。
可以通过dynamic设置来控制这一行为,它能够接受以下的选项:
true:默认值。动态添加字段
false:忽略新字段
strict:如果碰到陌生字段,抛出异常
dynamic设置可以适用在根对象上或者object类型的任意字段上。
## 给索引lib2创建映射类型
POST /lib2
{
"settings":{
"number_of_shards" : 3,
"number_of_replicas" : 0
},
"mappings":{
"books":{
"properties":{
"title":{"type":"text"},
"name":{"type":"text","index":false},
"publish_date":{"type":"date","index":false},
"price":{"type":"double"},
"number":{"type":"integer"}
}
}
}
}
## 给索引lib2创建映射类型
POST /lib2
{
"settings":{
"number_of_shards" : 3,
"number_of_replicas" : 0
},
"mappings":{
"books":{
"properties":{
"title":{"type":"text"},
"name":{"type":"text","index":false},
"publish_date":{"type":"date","index":false},
"price":{"type":"double"},
"number":{
"type":"object",
"dynamic":true
}
}
}
}
}